
Automatic Streamlining for Constrained Optimisation

Patrick Spracklen, Nguyen Dang, Özgür Akgün, Ian Miguel

School of Computer Science, University of St Andrews, St Andrews, UK
{jlps, nttd, ozgur.akgun, ijm}@st-andrews.ac.uk

Abstract. Augmenting a base constraint model with additional constraints can
strengthen the inferences made by a solver and therefore reduce search effort. We
focus on the automatic addition of streamliner constraints, which trade complete-
ness for potentially very significant reduction in search. Recently an automated
approach has been proposed, which produces streamliners via a set of streamliner
generation rules. This existing automated approach to streamliner generation has
two key limitations. First, it outputs a single streamlined model. Second, the ap-
proach is limited to satisfaction problems. We remove both limitations by provid-
ing a method to produce automatically a portfolio of streamliners, each represent-
ing a different balance between three criteria: how aggressively the search space
is reduced, the proportion of training instances for which the streamliner admitted
at least one solution, and the average reduction in quality of the objective value
versus the unstreamlined model. In support of our new method, we present an
automated approach to training and test instance generation, and provide several
approaches to the selection and application of the streamliners from the portfolio.
Empirical results demonstrate drastic improvements both to the time required to
find good solutions early and to prove optimality on three problem classes.

Keywords: Constraint Programming · Streamliners

1 Introduction

An initial constraint model can be augmented through additional constraints. If well
chosen, these constraints strengthen the inferences the solver can make and therefore
reduce search. Implied constraints are inferred directly from the initial model and there-
fore do not alter the set of solutions to the model. Manual [15,16] and automated
[7,9,17] approaches to generating implied constraints have been successful.

In contrast, streamliner constraints [20] (our focus herein) are not inferred from the
initial model and often radically alter the set of solutions to the model in an attempt to
focus effort on a highly restricted but promising portion of the search space. Streamlin-
ers trade the completeness offered by implied constraints for potentially much greater
search reduction. They were originally derived manually by examining solutions of
small instances of a problem class for patterns, which were used as the basis for stream-
liners [20,22,23,24]. For example Gomes and Sellmann added a streamliner requiring a
latin square structure when searching for diagonally ordered magic squares [20].

More recently, an automated approach has been proposed, which produces stream-
liners via a set of streamliner generation rules [35,32] operating on the ESSENCE [12,13,14]
specification of a problem class. Using training instances drawn from the problem class

2 Spracklen, Dang, Akgun, Miguel

under consideration, streamliner candidates are evaluated automatically and the most
promising ones are used to solve more difficult instances from the same problem class.

The existing automated approach to streamliner generation has two key limitations.
First, it outputs a single streamlined model. If on a test instance this streamliner excludes
all solutions the only remedy is to revert to the initial model. Second, the approach is
limited to satisfaction problems. We remove both limitations by providing a method to
produce automatically a portfolio of streamliners, each representing a different balance
between three criteria: how aggressively the search space is reduced, the proportion
of training instances for which the streamliner admitted at least one solution, and the
average reduction in quality of the objective value versus an unstreamlined model.

In support of our new method, we present an automated approach to training and test
instance generation, and provide several approaches to the selection and application of
the streamliners from the portfolio. The result is the first automatic method to produce
streamliners for optimisation problems and to offer alternatives if the most preferred
streamliner is unsuccessful.

2 Candidate Streamliner Generation

As in [32], our approach proceeds from a specification of a problem class in the ab-
stract constraint specification language ESSENCE [14], such as the SONET example in
Figure 1. An ESSENCE specification comprises the problem class parameters (given);
the combinatorial objects to be found (find); the constraints the objects must satisfy
(such that); identifiers declared (letting); and an optional objective function
(min/maximising). The key feature of the language is support for abstract deci-
sion variables, such as multiset, relation and function, as well as nested types, such as
the multiset of sets in Figure 1.

The highly structured description of a problem an ESSENCE specification provides
is better suited to streamliner generation than a lower level representation, such as a
constraint modelling language like MiniZinc [27]. This is because nested types like
multiset of sets must be represented as a constrained collection of more primitive vari-
ables, obscuring the structure that is useful to drive streamliner generation. We employ
the same set of streamliner generation rules as [32], summarised in Table 1. High-order
rules take another rule as an argument and lift its operation onto a decision variable
with a nested domain such as the complex multi-set structure present in SONET. This
allows for the generation of a rule such as enforcing that approximately half (with soft-
ness parameter) of the sets in the multiset only contain even numbers. Imposing extra
structure in this manner can reduce search very considerably. Table 2 presents candi-
date streamliners automatically generated for the problem classes considered herein.
Although rich, the set of ESSENCE type constructors is not exhaustive. Graph types, for
example, are a work in progress [10]. At present, therefore, we might specify such a
problem in terms of a set of pairs. The streamliner generator constraints would produce
candidate streamliners based on this representation.

Using training instances drawn from the problem class under consideration, stream-
liner candidates are evaluated as follows. The CONJURE [1,3] automated modelling
tool is used to refine the ESSENCE specification (including streamliner) into the solver-

Automatic Streamlining for Constrained Optimisation 3

1 $ SONET
2 given nnodes, nrings, capacity : int(1..)
3 letting Nodes be domain int(1..nnodes)
4 given demand : set of set (size 2) of Nodes
5
6 find network : mset (size nrings) of
7 set (maxSize capacity) of Nodes
8 minimising sum ring in network . |ring|,
9 such that forAll pair in demand .

10 exists ring in network . pair subsetEq ring
11
12 $ Minimum Energy Broadcast
13 letting dNodes be domain int(1..n_nodes)
14 letting dDepths be domain int(1..n_nodes)
15 find parents: function (total)
16 dNodes --> dNodes,
17 depths : function (total)
18 dNodes --> dDepths
19
20 $ Progressive Party
21 letting Boat be domain int(1..n_boats)
22 find hosts: set (minSize 1) of Boat,
23 sched: set (size n_periods) of
24 function (total) Boat --> Boat

Fig. 1: ESSENCE specifications for the three problem classes considered herein. Synchronous
Optical Networking (SONET) [28] is given in full. For brevity, only the parameters and decision
variable declarations (from which streamliners are generated) are shown for the Progressive Party
Problem [33] and the Minimum Energy Broadcast Problem [6]

independent constraint modelling language ESSENCE PRIME, which SAVILE ROW [29]
translates into input suitable for the constraint solver MINION [19].

3 Searching for a Streamliner Portfolio

Candidate streamliners are often most effectively used in combination [20]. In an at-
tempt to find a single “best” streamlined model, Spracklen et al. described a Monte
Carlo Tree Search [5] (MCTS)-based algorithm to search the lattice of models where
the root is the original ESSENCE specification and an edge represents the addition of a
streamliner to the combination associated with the parent node.

This search had a single objective, average search effort reduction across a set of
training instances, which generates only one streamlined model per problem class. This
model tends to achieve a high search effort reduction, but has difficulty generalising
across the problem class. Furthermore, it is designed only for satisfaction problems. The
optimisation problems with which Spracklen et al. experimented were converted into

4 Spracklen, Dang, Akgun, Miguel

satisfaction problems by bounding the objective and searching for a satisfying solution.
This is a serious limitation since a candidate streamlined model may find a solution
quickly, but of poor quality, and may exclude the set of optimal solutions entirely.

Class Trigger Domain Name Softness

First-order

int
odd{even} no

lower{upper}Half no

function int --> int
monotonicIncreasing{Decreasing} no

largest{smallest}First{Last} no

function (X,X) --> X
commutative no
associative no

non-commutative no
partition from X quasi-regular yes

sequence
montonicIncreasing{Decreasing} no

largest{smallest}First{Last} no

Higher-order

matrix/set of X

all no
most yes
half no

approxHalf yes

function X --> Y

range no
defined no

pre{post}fix yes
allBut yes

function (X,X) --> Y diagonal no
partition from X parts no

sequence
range no

defined no

Table 1: The rules used to generate conjectures. Rows with a softness parameter specify a family
of rules each member of which is defined by an integer parameter.

Problem Streamliner Description
Id

Sonet 6 Exactly half the nodes installed on each ring are odd.
13 Approx. half the nodes installed on each ring are odd.
15 Approx. half the nodes on each ring are from the lower half of the Nodes domain.
67 The objective variable is constrained to the lower half of its domain

MEB 18 Approx. half of the entries in the range of the parents function must be even
41 The range of the depths function contains all odd entries

PPP 7 For half of the hosts the boats must be in the lower half of the Boats domain
14 For approx. half of the hosts the Boats must be odd

Table 2: Sample streamliners generated for the three problem classes we consider (see Figure 1 for
their ESSENCE specifications). References to odd/even are with respect to the integer identifiers
associated with entities such as nodes or boats. Streamliner Id is a unique reference given to a
streamliner when generated through CONJURE; we shall refer to these examples in Section 8.1

Automatic Streamlining for Constrained Optimisation 5

To address these problems we adopt a multi-objective optimisation approach, where
each point x in the search space X is associated with a d-dimensional (d is the number
of objectives) reward vector rx in Rd. Our three objectives allow us explicitly to bal-
ance considerations of solution quality against how aggressively the streamlined model
reduces search:

1. Applicability. The proportion of training instances for which the streamlined model
admits a solution.

2. Search Reduction. The mean reduction in time to prove optimality in comparison
with an unstreamlined model.

3. Optimality Gap. The mean percentage difference between the optimal value found
by the streamlined model and the true optimal value under the unstreamlined model.

All objectives are transformed such that they can be maximized. With these three
objectives for each streamliner combination we define a partial ordering on Rd and
so on X using the Pareto dominance test. Given x, x′ ∈ X with vectorial rewards
rx = (r1, . . . , rd) and rx′ = (r1′, . . . , rd′) rx dominates rx′ iff ri is greater than or
equal to ri′ for i = 1 . . . d.

To search the lattice structure for a portfolio of Pareto optimal streamlined models
we have adapted the dominance-based multi-objective MCTS (MOMCTS-DOM) algo-
rithm [34]. This has four phases, as summarised below and in Figure 2:

1. Selection: Starting at the root node, the Upper Confidence Bound applied to Trees
(UCT) [5] policy is applied to traverse the explored part of the lattice until an un-
expanded node is reached.

2. Expansion: Uniformly select and expand an admissible child
3. Simulation: The collection of streamliners associated with the expanded node are

evaluated. The vectorial reward (Applicablity, Search Reduction, Optimality Gap)
across the set of training instances is calculated and returned.

4. BackPropagation: The current portfolio; which contains the set of non dominated
streamliner combinations found up to this point during search; is used to compute
the Pareto dominance. The reward values of the Pareto dominance test are non sta-
tionary since they depend on the portfolio, which evolves during search. Hence, we
use the cumulative discounted dominance (CDD) [34] reward mechanism during
reward update. If the current vectorial reward is not dominated by any streamliner
combination in the portfolio then the evaluated streamliner combination is added
to the portfolio and a CDD reward of 1 is given, otherwise 0. Dominated stream-
liner combinations are removed from the portfolio. The result of the evaluation is
propagated back up through all paths in the lattice to update CDD reward values,
as shown in the figure.

4 Generating Diverse Training Instances

Our method relies on training instances from a given problem class to construct a high
quality portfolio of streamlined models. Ideally these should be diverse, otherwise the
portfolio may be skewed towards instances of one type and so not generalise across

6 Spracklen, Dang, Akgun, Miguel

Fig. 2: MOMCTS-DOM operating on the streamliner lattice. A, B and C refer to single candidate
streamliners generated from the original ESSENCE specification. As MOMCTS-DOM descends
down through the lattice the streamliners are combined through the conjunction of the individual
streamliners (AB, ABC). The nodes are labelled with CDD reward value / times visited.

the problem class. To ensure diversity, we employ an automated approach combining a
per-class parameter generator and an algorithm configuration tool, described below.

For each problem class we wrote a simple instance generator that accepts a param-
eter setting and a random seed, and outputs a problem instance. At the moment the
instance generator has to be manually created, and is the only part of the whole sys-
tem that is not automated. However, this issue has been tackled in a recent work [2]
within the same pipeline, which can be integrated into our system in the future. To keep
the computational cost manageable, we require a set of relatively easy (but not trivial)
instances for the training phase, which we define as solvable by MINION [19] on an
unstreamlined model within a time limit of [10, 300] seconds.

To find instances satisfying our criteria, the automatic algorithm configuration tool
irace [25] is used. Parameters of each generator are tuned by irace with a performance
measure guiding it towards regions of satisfiable instances within the required range of
solving time. As the tuning procedure usually converges at certain regions of the search,
multiple tunings with two settings of irace (the default and another that allows more
exploration) are performed per problem class to obtain more diverse sets of instances.

There is an inherent tradeoff with the number of training instances used during
search. If too few instances are used it diminishes the ability of the generated portfolios
to generalise across the problem class, whereas a larger set reduces the iteration speed
of MOMCTS to the point where it is ineffective in searching the streamliner lattice.
Taking these considerations into account, for the experiments in this paper we have set
the number of training instances to 50.

We first generate a large instance set using irace. Table 3 (column 2) presents the
results of doing so for the problem classes we consider in this paper. In order to select
our representative subset of 50 instances, instance-specific features are used to judge
instance similarity. We use the features proposed in [18] and generated by MINION. All

Automatic Streamlining for Constrained Optimisation 7

Problem Total Number Number Of
Of Instances Clusters

SONET 517 3
MEB 989 8
PPP 1264 8

Table 3: Instance Generation and Clustering. 50 training instances are selected from among the
generated clusters.

features are normalised according to the z-score standardisation. GMeans clustering is
used on the generated features to detect the number of instance clusters (see column 3
of Table 3). To build the training set instances are randomly selected from each cluster,
with the number of instances taken from each weighted according to the relative size of
each cluster.

The time limit for training instances, and the size of the training set are both param-
eters to our method, which will be investigated in future work.

5 Pruning the Streamliner Portfolio

As the number of objectives increases so, typically, does the size of the Pareto front,
and hence the size of the generated streamliner portfolio. This is demonstrated in Table
4, which, in column 2, records the size of the streamliner portfolios generated through
MOMCTS for our three problem classes. A large portfolio is cumbersome when consid-
ering streamliner selection and scheduling. We observed, however, that the streamlined
models were not distributed evenly across the Pareto front. Therefore, GMeans cluster-
ing is used to identify the number of clusters present in the portfolio and a point from
each cluster is then selected to form a representative subset of the full portfolio (see
column 3 of Table 4).

Initial Pruned
Problem Portfolio Size Portfolio Size
SONET 57 6

MEB 56 3
PPP 64 9

Table 4: We prune an initially generated streamliner portfolio through GMeans clustering and
select a representative point from each cluster.

6 Selecting from the Streamliner Portfolio

Having constructed a streamliner portfolio for a particular problem class using MOM-
CTS and the set of training instances, for a given test instance the question arises as to

8 Spracklen, Dang, Akgun, Miguel

Algorithm 1 Lexicographic Streamliner Selection
procedure SELECTION(Portfolio P, Ordering, T imetotal, Instance)

P← sort(P, by = Ordering)
T imeTaken← 0
while T imeTaken ≤ T imeTotal do

Streamliner← P.next()
Stats← Apply(Streamliner, Instance)
if Stats→sat() then

setBound(Instance, Stats.bound) . Set new bound on the instance
end if
T imeTaken + = Stats.time

end while
end procedure

which streamlined models from the portfolio should be used, in what order, and accord-
ing to what schedule. We consider both static lexicographic selection methods, which
establish a priority order over our three objectives of Applicability, Search Reduction
and Optimality Gap, and a dynamic method, which adjusts the selection based on the
performance on the instance thus far.

6.1 Lexicographic Selection Methods

It is possible to order the streamlined models in a portfolio lexicographically by, for
example, prioritising Applicability, then Search Reduction, and finally the Optimality
Gap. Given three objectives, there are six such orderings to consider. Through prelimi-
nary testing it became apparent that only two of these orderings are effective, where the
Applicability objective is prioritised. The other orderings trade Applicability for either
Search Reduction or a better Optimality Gap. On more difficult test instances, signifi-
cant search effort can be required to prove that an aggressive streamliner has rendered
an instance unsatisfiable, which can lead to poor overall performance. Thus two lexi-
cographic selection methods are used herein: {Applicability First, Optimality Second,
Reduction Third} and {Applicability First, Reduction Second, Optimality Third}.

The selection process involves traversing the portfolio (using the defined ordering)
for a given time period and applying each streamliner in turn to the given instance as
shown in Algorithm 1. The schedule is static in that it only moves to the next stream-
lined model when the search space of the current one is exhausted. A key parameter
is Timetotal, which specifies the total budget in seconds for traversing the streamliner
portfolio. In Section 8 for each selection method four different settings for this param-
eter are experimented with to explore its effect on overall performance.

6.2 UCB Streamliner Selection

During optimisation, typically a number of feasible solutions are discovered before
the optimal objective value is found. This intermediate information can be used as an
indicator of the performance of the streamlined model. For a given instance we have

Automatic Streamlining for Constrained Optimisation 9

Algorithm 2 UCBSelection
procedure SELECTION(Portfolio, Ordering, T imetotal, Instance)

T imetaken← 0
UCBTimeLimit← 1
NumberOfIterations← 0
Map . Mapping from Streamliner to Process
while T imetaken ≤ T imetotal do

Streamliner← UCTSelection(Portfolio)
if Map[Streamliner].restart then

Process← remodel(instance, streamliner) . Remodel with the new bound
Map[Streamliner].process← Process
Stats← run(Process, UCBTimeLimit)

else
Process←Map[Streamliner].process
Stats← run(Process, UCBTimeLimit) . Continue running existing process

end if
Map[Streamliner].visits += 1
NumberOfIterations += 1
if Stats→sat() then

Map[Streamliner].reward += 1
setBound(Instance, Stats.bound) . Set new bound on the instance
for S ←Map do

if S != Streamliner then
Map[S].restart = True . New Bound was found; restart all other processes

end if
end for

end if
T imetaken + = Stats.time

end while
end procedure

no prior knowledge of the suitability of a particular streamlined model and as such it is
important to balance the time taken exploring the portfolio to identify the performance
of each model while exploiting those that have already found solutions. Representing
this as a multi-armed bandit problem allows us to employ well known regret-minimising
algorithms to deal with the exploration/exploitation dilemma. The multi-armed bandit
can be seen as a set of real distributions, each distribution being associated with the
rewards delivered by one of the K levers. In our case this is the K streamlined models
that comprise the portfolio. On each iteration a streamliner is selected to search the
given instance and a reward is observed based upon the improvement to the objective
value. The aim is at each iteration to apply the optimal streamliner, where optimality
is defined as producing the largest increase/decrease in the value of the objective. The
regret ρ after T rounds is defined as the expected difference between the reward sum
associated with an optimal strategy and the sum of the collected rewards observed. The
UCB1 [4] algorithm was chosen to solve the multi-armed bandit problem as first and
foremost its regret grows logarithmically in line with the number of actions taken.

10 Spracklen, Dang, Akgun, Miguel

For each streamliner k we record the average reward xk and the number of times
k has been tried in the selection (nj) out of a total of n iterations. On each iteration a
streamliner is chosen that maximizes xk +

√
2 log(n)/nj . The reward distributions for

an individual streamliner are not fixed, so this is not a Stationary Multi-Armed Bandit
problem. However, if a streamliner performs well, we expect it will continue performing
well during search even if there is a slight variation in the mean reward. We have found
that using UCB1 gives good results. Future work could investigate the use of Upper
Confidence Bound policies for non-stationary bandit problems, such as the family of
Exp3 algorithms [21,26].

When traversing the portfolio UCB performs incremental evaluation, it runs a stream-
liner for a set time, observes the results, and potentially moves on before the correspond-
ing search space has been exhausted. When the streamliner is pre-empted it is necessary
to pause the search in order to avoid repeating work if it is rescheduled at a later point.
The only exception to this is whenever a new bound on the objective is discovered all of
the streamliners from the portfolio, aside from the current streamliner, are restarted and
remodeled with the new bound. There are two main benefits to doing this. Firstly, by
restarting the streamliner has the newly constrained bound at the top of the search tree
which allows it to make more informed decisions higher up without descending into
unsatisfactory subtrees. Secondly, by remodeling it takes advantage of the toolchain
(CONJURE and SAVILE ROW) which may be able to reformulate the model based upon
this new information and produce reductions at the solver level. Algorithm 2 shows the
UCBSelection process in detail.

7 Experimental Setting

We evaluate our automated streamlining approach on the three problem classes in Fig-
ure 1. We selected these problems to give good coverage of the abstract domains avail-
able in ESSENCE, such as set, multi-set and function. Furthermore, SONET and Pro-
gressive Party have nested domains: multi-set of set and set of function respectively.

Our hypothesis is that a streamliner portfolio, generated automatically on a set of
automatically generated training instances from a given problem class, can be employed
to solve more difficult test instances to deliver substantial performance improvements
relative to an unstreamlined model. Training instances were generated as per Section
2, with a time limit of [10, 300] seconds. Test instances are generated using the same
instance generator and the tuning tool irace but with a time limit of (300, 3600] seconds.
50 instances are selected randomly to form the test set.

Care must be taken when considering the proof of optimality of our test instances.
Although in solving a streamlined model the constraint solver may exhaust the search
space this is not a proof that the current objective value is optimal. This is because
streamliners are not necessarily sound, hence a streamlined model may exclude the set
of optimal solutions. For this reason, after the streamliner portfolio has been run for its
allotted time, we use the remainder of the time budget to run the unstreamlined model,
starting from the best objective value found by the streamliner portfolio, to provide the
optimality proof. The benefit of streamlining in this context is in finding high quality
solutions much more quickly than the unstreamlined model.

Automatic Streamlining for Constrained Optimisation 11

All experiments were run on a cluster of 280 nodes, each with two 2.1 GHz, 18-core
Intel Xeon E5-2695 processors. MOMCTS was run on a single core with a budget of
4 CPU days for each problem class. Results on 50 test instances under the unstream-
lined and streamlined models are reported, where every test instance was run with three
random seeds.

Source code, instance generators, datasets and detailed results are available at https:
//github.com/stacs-cp/CP2019-Streamlining.

8 Results

Table 5 summarises results on 50 test instances (3 runs/instance) for each of our three
problem classes. We evaluate four different approaches: an unstreamlined model, and
streamliner portfolios with UCB selection, lexicographic ordering {Applicability First,
Optimality Second, Reduction Third} (denoted opt-second), and lexicographic ordering
{Applicability First, Reduction Second, Optimality Third} (denoted red-second). For
each streamliner selection method, a parameter is the amount of time allocated to the
streamliner portfolio before handing over to the unstreamlined model to prove optimal-
ity. Four different values for this time budget were tested: 30, 60, 120 and 300 seconds.

Results in Table 5 are strongly positive. They show that all the streamliner portfo-
lio approaches can not only find an optimal solution and prove optimality on more test
instances than the unstreamlined model, but also vastly reduce the amount of time re-
quired for both tasks. In general, the UCB-30s variant has the best overall performance
across the three problem classes, and provides consistently robust improvement over
the unstreamlined model.

Figure 3 presents more details of how the streamliner approaches improve on the
unstreamlined models on an instance basis. In these plots, we use the time-reduction
ratio, a “normalised” version of the speed-up values reported in Table 5 for presentation:
as the speed-up values can be arbitrarily large, many data points in the speed-up plots
can appear in a very small range, making them difficult to distinguish. The reduction
ratio, which is calculated as 1− 1/speed-up, is limited to at most one and can be easily
scaled. For brevity, we only show in Figure 3 results of the streamliner variants with the
time limit of 30 seconds. Each data point corresponds to a pair of instances and random
seeds. The plots show that the solving time of the test instances are well distributed
across the x-axis, which is a good indication for the diversity of the test instance set.
There are several cases where the unstreamlined model cannot find or prove optimality
within the time budget and the streamliner can, which are represented by the data points
on the rightmost side after the vertical red lines.

The MEB results demonstrate strong performance of all three streamliner approaches
on all test instances. On SONET, UCB-30s clearly has better performance compared
with the other two approaches, which aligns with the summary results in Table 5. While
still strongly positive, on PPP the reduction provided by the streamliner approaches is
not quite as strong as for the other two problem classes. There are a minority of cases
where even the best streamliner approach, UCB-30s, cannot find or prove optimality
within the time budget, as shown by the data points in the bottom-right corners.

https://github.com/stacs-cp/CP2019-Streamlining
https://github.com/stacs-cp/CP2019-Streamlining

12 Spracklen, Dang, Akgun, Miguel

mean Finding an optimal solution Finding and prove optimality
Strategy #proved time(s) speed-up ratio time(s) speed-up ratio

(1-hour) p10 p50 p90 p10 p50 p90 p10 p50 p90 p10 p50 p90

M
E

B

unstreamlined 35 157.9 1185.2 13893.9 311.1 1976.2 16781.3
UCB-30s 50 6.1 8 11.0 14.2 158.2 1583 15.2 22.2 176.7 6.6 43.6 492.2
UCB-60s 50 4.4 7.2 12 15 150.3 1552.2 16.1 24.6 188.7 6.9 35.6 521.9
UCB-120s 50 4.5 7.8 12.1 14.9 158 1604 15.1 24.8 220.9 6.2 36.1 518.4
UCB-300s 50 4.5 7.1 12.1 15 157.5 1605.4 14.9 24.9 345.1 5.2 32.1 416.6
opt-second-30s 49.7 4.1 6.3 13.4 14.1 171.1 1701.5 11.6 22.9 221.3 7.3 44.6 605.9
opt-second-60s 49.7 4.1 6.6 14.9 15.7 174.3 1833.4 11.7 22.5 199.6 7 45.3 625.4
opt-second-120s 50 4.2 6.2 13.6 19.9 178.3 1776.7 11.7 21.8 181.6 7.3 46.5 594.9
opt-second-300s 50 4.1 6.1 12.8 19.9 170.9 1865.8 11.5 21.8 176.9 7.5 47.6 647.0
red-second-30s 49.7 4.1 6.7 13.6 14.1 156 1845.1 11.8 22.8 249.1 7.3 43 532.2
red-second-60s 49.7 4.2 6.1 12.8 15.3 187.0 1878.3 11.8 21.7 198.7 7.3 45 646.3
red-second-120s 50 4.1 6.2 12.6 16.9 177.4 1903.5 11.6 22.1 178.1 7.2 46.3 605.4
red-second-300s 50 4.1 6.1 13.5 16.8 167.5 1891 11.7 22.3 178.8 7.6 47.5 625.1

PP
P

unstreamlined 41.3 73.4 564.3 3123 313 1339.7 6908.1
UCB-30s 47.7 13 73.7 1007.9 1.2 4.1 52 49.2 350.8 1946.6 1.0 3.0 29.3
UCB-60s 48.3 19.2 105.9 1078.7 0.9 2.9 28.7 86.1 428.8 2141.5 0.9 2.5 24.4
UCB-120s 48.3 18.9 163.3 1129.7 0.7 2.5 31.8 135.5 449.6 1936.2 0.9 2.1 16.8
UCB-300s 48.3 19 344.6 1311.3 0.4 1.6 30.1 323.9 646.3 2273.2 0.6 1.4 10.5
opt-second-30s 46.7 8.3 105.1 1340.5 0.9 3.5 75.1 44.1 419.4 2592.5 0.9 2.4 26.2
opt-second-60s 47 8.1 105.8 1444.2 0.8 3.4 75.2 73.7 453.5 2640.3 0.8 2.3 18.9
opt-second-120s 47.3 8.9 142.9 1765.1 0.7 3.6 76.5 113.1 486 2716.7 0.8 1.9 17.6
opt-second-300s 47.7 8.9 211 1349.3 0.5 3.1 72.4 110.8 599.1 2703.2 0.7 1.8 15.5
red-second-30s 45 14.7 177.7 2344.7 0.7 2 18.9 73.3 626.2 3537.7 0.8 1.7 14.8
red-second-60s 45.3 21.2 195.2 2341.6 0.6 2.1 15.6 96.1 643.2 3174.7 0.7 1.8 13.8
red-second-120s 45.7 13.6 175.7 2384 0.6 2.1 17.5 136.5 591.5 3095 0.6 1.8 11.1
red-second-300s 45.3 13.6 228 2731.5 0.6 1.9 16.8 157 657.6 3339.1 0.6 1.4 8.4

SO
N

E
T

unstreamlined 43 539.5 1263.2 3820.3 574.4 1417.8 3954
UCB-30s 50 5 21.8 121.9 10.3 49.7 341.5 34 42.3 174.0 6.6 23.4 60.5
UCB-60s 50 6.1 28 131.9 8.5 38.1 300.3 63.3 75.3 198.7 4.9 14.4 42.1
UCB-120s 46 6 31.1 246.8 3.4 31.5 321.9 121.2 132.2 581.2 2.3 7.6 32.1
UCB-300s 50 7 30.7 344.5 3.8 33.4 287.3 111.8 310.8 437.8 1.7 4.2 22.9
opt-second-30s 49.3 3.5 9 1023.8 1.4 112.7 553.9 27.7 72.7 1023.2 1.4 19.2 70.5
opt-second-60s 49.7 3.5 9 443.2 1.5 113.1 611.4 27.6 93.6 644 1.5 15.9 66.9
opt-second-120s 49.3 3.3 8.3 455.6 1.3 117.3 677.9 26.9 120.7 701 1.3 14.6 68.6
opt-second-300s 49.3 3.7 8.4 549 3.6 121.0 549.9 28 123.1 770.6 1.1 10.3 69.4
red-second-30s 47.7 3.0 115.4 1749.6 0.8 10.6 483.5 27.7 227.3 2167.4 0.8 5.2 61.7
red-second-60s 47.7 3.0 105.3 1760.9 0.8 14.2 530.9 28.1 185 2137.2 0.8 7.2 64.1
red-second-120s 47.3 3.0 96.7 1532.5 0.8 16 506.3 28.3 157.8 2295.6 0.8 7.6 62.6
red-second-300s 47.7 3.0 96 1451.4 0.9 18.2 533.8 27.1 221.4 1717.6 0.8 6.1 65.2

Table 5: Summary results on 50 test instances (3 runs/instance) on three optimisation problem
classes: MEB, PPP and SONET. The first column, mean #proved 1-hour, represents the average
number of instances solved within one hour. All streamliner portfolio variants significantly out-
perform the unstreamlined model by this simple measure. The remaining columns report results
where each run is now given a maximum amount of 96 CPU-hours (as tuning and generation of
test instances is performed on the basis of one seed, on the two other seeds it is possible for the
unstreamlined model to time out at one CPU hour). They include the time to reach an optimal so-
lution, the time to both reach an optimal solution and prove its optimality; and the corresponding
speed-up ratios when compared to the unstreamlined model. For each measurement, we report
the 10th percentile (p10), the median (p50), and the 90th percentile (p90). These values are re-
ported as the mean can be skewed by outliers. In particular, if the optimal solution is not proved
this results in a large time value (96 hours = 345600 seconds) for that run. The percentiles avoid
this situation and show a clearer overall trend.

Automatic Streamlining for Constrained Optimisation 13

Table 5 and Figure 3 demonstrate that the time to prove optimality is very signif-
icantly reduced through the application of streamliners. This stems from their ability
to find high quality feasible solutions quickly. Hence, once the time allocated to the
streamlined models has elapsed, the unstreamlined model begins from an optimal or
very high quality objective value, requiring much less effort to exhaust the search space.

8.1 UCB Streamliner Selection: Discussion

In this section, we discuss the UCB approach for streamliner selection in more detail, as
UCB-30s achieves the best overall performance across the three problem classes, both
in terms of reduction to finding the optimal objective value and reduction to proving

0 500 1000 1500 2000 2500 3000 3500 unreached
-3.0
-1.0

0

1

(a) MEB - time to optimal

0 500 1000 1500 2000 2500 3000 3500 unproved

unproved

-3.0
-1.00

1 opt-second-30s
red-second-30s
UCB-30s

(b) MEB - time to proof

0 500 1000 1500 2000 2500 3000 3500 unreached

unreached

-31.0
-15.0

0

1

(c) PPP - time to optimal

0 500 1000 1500 2000 2500 3000 3500 unproved

unproved

-11.0
-5.0

0

1 opt-second-30s
red-second-30s
UCB-30s

(d) PPP - time to proof

0 500 1000 1500 2000 2500 3000 3500 unreached
-2.0
-1.0

0

1

(e) SONET - time to optimal

0 500 1000 1500 2000 2500 3000 3500 unproved

unproved

-2.0
-1.0

0

1 opt-second-30s
red-second-30s
UCB-30s

(f) SONET - time to proof

Fig. 3: Reduction ratio of streamliner methods with 30 seconds for scheduling of the streamliner
portfolio. Two reduction ratio values are reported: reduction in time to reach an optimal solution,
and reduction in time to reach an optimal solution and prove its optimality. The x-axis represents
the time required by the unstreamlined model. The y-axis shows the the reduction value. Each
data point corresponds to a pair of (instance, random seed). These plots focus on the region within
a 1-hour time limit: all data points outside that ranges are shrunk into the same region. More
specifically, runs where the (unstreamlined model) streamliner methods do not reach an optimal
solution or does not prove optimality in one hour are separated by the red (vertical) horizontal
lines. The reduction values, however, are still the true values calculated based on the 4-day CPU
limit. As most data points lie within the range of y ∈ [0, 1], the plot is rescaled so that this range
is zoomed in for better visualisation.

14 Spracklen, Dang, Akgun, Miguel

Fig. 4: Objective value progression from the unstreamlined model compared with its progression
under the UCB selection method for a representative SONET instance.

optimality. In contrast to the lexicographic methods, which only move on to the next
streamlined model when the search space of the current one is exhausted, UCB benefits
from its ability to sample the entire streamliner portfolio. After the initial exploration
phase, where each streamliner is given its initial application, UCB then selects stream-
liners based upon the observed rewards. Its main advantage is the ability to balance the
exploration and exploitation of the streamlined models in the portfolio.

It is not always the case that the objective is found purely through the application of
one streamliner. For SONET, on average three streamliners are used across the 50 test
instances to arrive at the optimal objective value. Access to the whole portfolio allows
UCB to descend upon the optimal objective value more quickly and is one reason for
its success. The application of several different streamliners at different time points can
be used to reduce the bound of the objective in an effective manner as per Figure 4.

The UCB algorithm exploits the streamliners that have previously been shown to
produce an improvement in the objective value. This can be very clearly shown from
Figure 4 where for an instance from SONET the streamliners 13, 13-67 and 6-671(explained
in Table 2) improve the objective multiple times during the course of the selection pro-
cess. This is due to the fact that UCB is continuing to exploit those streamliners as
previously they had success. However, it is also crucial to continually explore the port-
folio in an attempt to find streamliners that did not initially have success but may do
after a certain number of iterations. Streamliner 13-15 is an example of such a case.

8.2 Time Allocated to the Streamliner Portfolio: Discussion

From Table 5 it can be seen that the TimeTotal parameter as defined in Algorithms
1 and 2 can have a large impact on the overall performance of the selection method.
There is a general trend (excluding MEB which will be discussed separately) that as
the TimeTotal increases the time both to find and prove the optimal objective value
increases. This may seem puzzling initially: if using a TimeTotal of 30s reduces the
time to find the optimal objective value to a certain extent, it might be expected that
a TimeTotal of 300s will do equally well. However, there are two things to consider.
First, streamliners from the portfolio are not guaranteed to preserve the optimal value
and so there is the potential for an optimality gap between what the streamliners can

113-67, for example, indicates a streamlined model including both streamliner 13 and 67

Automatic Streamlining for Constrained Optimisation 15

find and the true optimal of the instance. Therefore, the true optimal is only found
after the switch to the unstreamlined model occurs. Second, on average the streamliners
converge upon their optimal value in a very short period of time, 17s, 7s and 12s for
SONET, MEB and PPP respectively. By increasing the TimeTotal parameter it delays
the point at which the switch occurs to the unstreamlined model which in turn delays
the point at which the true optimal is found. However, for MEB the TimeTotal does not
have a large impact on performance and this is due to the fact that the streamliners in the
portfolio generally exhaust their search space very quickly. Hence, the whole portfolio
can be traversed before TimeTotal is reached and so the time at which the switch to the
unstreamlined model occurs is generally the same across all parameter settings.

The increase in time to prove optimality occurs as if the Ttotal parameter is set too
large then when the optimal value is found at time Topt, the whole duration from Topt →
Ttotal is spent proving the optimality of that solution in the streamlined subspaces.
Since proving optimality with respect to the streamliners does not prove optimality on
the unstreamlined model and so the whole time from Topt → Ttotal is wasted.

9 Conclusion and Future Work

We have presented the first automated approach to generating streamliners automati-
cally for optimisation problems, and for their selection and scheduling when employed
on unseen instances. On three quite different problem classes the results are very en-
couraging, with vastly reduced effort both to find and to prove optimal objective values.

An important question we plan to investigate further is the applicability of our
method to identify in which contexts our streamliner can and cannot help. In the context
of optimisation the benefit of streamlining lies in the early identification of the optimal,
or at least high quality, values for the objective. Where an unstreamlined model is able
to identify the optimal value quickly, the benefit of streamlining will be limited. When
considering satisfaction problems, however, streamlining can be used throughout the
search and we will compare the portfolio approach developed herein with the single
selection provided by the method presented in Spracklen et al. [32].

Furthermore, there are several methods for devising good search strategies for con-
strained optimisation problems. Recent research suggest using machine learning to de-
sign a promising search ordering [8], using solution density as a heuristic indicator [31]
and a number of value ordering heuristics to find good solutions early [30,11]. Stream-
lining constraints can potentially be used in combination with the existing methods for
devising good variable and value selection heuristics to achieve even better results.

Acknowledgements

This work is supported by UK EPSRC grant EP/P015638/1. It used the Cirrus UK Na-
tional Tier-2 HPC Service at EPCC (http://www.cirrus.ac.uk) funded by the University
of Edinburgh and EPSRC (EP/P020267/1).

16 Spracklen, Dang, Akgun, Miguel

References

1. Akgün, Ö.: Extensible automated constraint modelling via refinement of abstract problem
specifications. Ph.D. thesis, University of St Andrews (2014)

2. Akgün, Ö., Dang, N., Miguel, I., Salamon, A.Z., Stone, C.: Instance generation via generator
instances. In: International Conference on Principles and Practice of Constraint Program-
ming. Springer (2019)

3. Akgün, Ö., Gent, I.P., Jefferson, C., Miguel, I., Nightingale, P.: Breaking conditional sym-
metry in automated constraint modelling with Conjure. In: ECAI. pp. 3–8 (2014)

4. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the mul-
tiarmed bandit problem. Machine Learning 47(2), 235–256 (May 2002).
https://doi.org/10.1023/A:1013689704352

5. Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P.I., Tavener, S., Perez, D.,
Samothrakis, S., Colton, S., et al.: A survey of monte carlo tree search methods. IEEE Trans-
actions on Computational Intelligence and AI (2012)

6. Burke, D.A., Brown, K.N.: CSPLib problem 048: Minimum energy broadcast (meb). http:
//www.csplib.org/Problems/prob048

7. Charnley, J., Colton, S., Miguel, I.: Automatic generation of implied constraints. In: ECAI.
vol. 141, pp. 73–77 (2006)

8. Chu, G., Stuckey, P.J.: Learning value heuristics for constraint programming. In: Interna-
tional Conference on AI and OR Techniques in Constriant Programming for Combinatorial
Optimization Problems. pp. 108–123. Springer (2015)

9. Colton, S., Miguel, I.: Constraint generation via automated theory formation. In: Inter-
national Conference on Principles and Practice of Constraint Programming. pp. 575–579.
Springer (2001)

10. Dunlop, F., Enright, J., Jefferson, C., McCreesh, C., Prosser, P., Trimble, J.: Expression of
graph problems in a high level modelling language. In: Proceedings of the International
Workshop on Graphs and Constraints (2018)

11. Fages, J.G., Prud’Homme, C.: Making the first solution good! In: 2017 IEEE 29th Interna-
tional Conference on Tools with Artificial Intelligence (ICTAI). pp. 1073–1077. IEEE (2017)

12. Frisch, A.M., Grum, M., Jefferson, C., Hernández, B.M., Miguel, I.: The essence of essence.
Modelling and Reformulating Constraint Satisfaction Problems p. 73 (2005)

13. Frisch, A.M., Grum, M., Jefferson, C., Hernández, B.M., Miguel, I.: The design of essence:
A constraint language for specifying combinatorial problems. In: IJCAI. vol. 7, pp. 80–87
(2007)

14. Frisch, A.M., Harvey, W., Jefferson, C., Martı́nez-Hernández, B., Miguel, I.: Essence: A con-
straint language for specifying combinatorial problems. Constraints 13(3), 268–306 (2008)

15. Frisch, A.M., Jefferson, C., Miguel, I.: Symmetry breaking as a prelude to implied con-
straints: A constraint modelling pattern. In: ECAI. vol. 16, p. 171 (2004)

16. Frisch, A.M., Miguel, I., Walsh, T.: Symmetry and implied constraints in the steel mill slab
design problem. In: Proc. CP01 Workshop on Modelling and Problem Formulation (2001)

17. Frisch, A.M., Miguel, I., Walsh, T.: Cgrass: A system for transforming constraint satisfaction
problems. In: Recent Advances in Constraints, pp. 15–30. Springer (2003)

18. Gent, I.P., Jefferson, C., Kotthoff, L., Miguel, I., Moore, N.C., Nightingale, P., Petrie, K.E.:
Learning when to use lazy learning in constraint solving. In: ECAI. pp. 873–878. Citeseer
(2010)

19. Gent, I.P., Jefferson, C., Miguel, I.: Minion: A fast scalable constraint solver. In: ECAI.
vol. 141, pp. 98–102 (2006)

20. Gomes, C., Sellmann, M.: Streamlined constraint reasoning. In: International Conference on
Principles and Practice of Constraint Programming. pp. 274–289. Springer (2004)

https://doi.org/10.1023/A:1013689704352
http://www.csplib.org/Problems/prob048
http://www.csplib.org/Problems/prob048

Automatic Streamlining for Constrained Optimisation 17

21. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: ECML. pp. 282–293.
LNCS 4212, Springer (2006). https://doi.org/10.100711871842 29

22. Kouril, M., Franco, J.: Resolution tunnels for improved sat solver performance. In: In-
ternational Conference on Theory and Applications of Satisfiability Testing. pp. 143–157.
Springer (2005)

23. Le Bras, R., Gomes, C.P., Selman, B.: On the erdős discrepancy problem. In: International
Conference on Principles and Practice of Constraint Programming. pp. 440–448. Springer
(2014)

24. LeBras, R., Gomes, C.P., Selman, B.: Double-wheel graphs are graceful. In: IJCAI. pp. 587–
593 (2013)

25. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.: The irace
package: Iterated racing for automatic algorithm configuration. Operations Research Per-
spectives 3, 43–58 (2016)

26. Munos, R.: From bandits to Monte-Carlo tree search: The optimistic principle applied to
optimization and planning. FTML 7(1), 1–129 (2014). https://doi.org/10.1561/2200000038

27. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: Minizinc: Towards
a standard cp modelling language. In: International Conference on Principles and Practice of
Constraint Programming. pp. 529–543. Springer (2007)

28. Nightingale, P.: CSPLib problem 056: Synchronous optical networking (sonet) problem.
http://www.csplib.org/Problems/prob056

29. Nightingale, P., Akgün, O., Gent, I.P., Jefferson, C., Miguel, I., Spracklen, P.: Automati-
cally improving constraint models in Savile Row. Artificial Intelligence 251, 35–61 (2017).
https://doi.org/10.1016/j.artint.2017.07.001

30. Palmieri, A., Perez, G.: Objective as a feature for robust search strategies. In: International
Conference on Principles and Practice of Constraint Programming. pp. 328–344. Springer
(2018)

31. Pesant, G.: Counting-based search for constraint optimization problems. In: Thirtieth AAAI
Conference on Artificial Intelligence (2016)

32. Spracklen, P., Akgün, Ö., Miguel, I.: Automatic generation and selection of streamlined con-
straint models via monte carlo search on a model lattice. In: International Conference on
Principles and Practice of Constraint Programming. pp. 362–372. Springer (2018)

33. Walsh, T.: CSPLib problem 013: Progressive party problem. http://www.csplib.org/
Problems/prob013

34. Wang, W., Sebag, M.: Hypervolume indicator and dominance reward based multi-objective
monte-carlo tree search. Machine learning 92(2-3), 403–429 (2013)

35. Wetter, J., Akgün, Ö., Miguel, I.: Automatically generating streamlined constraint models
with Essence and Conjure. In: International Conference on Principles and Practice of Con-
straint Programming. pp. 480–496. Springer (2015)

https://doi.org/10.1007\/11871842_29
https://doi.org/10.1561/2200000038
http://www.csplib.org/Problems/prob056
https://doi.org/10.1016/j.artint.2017.07.001
http://www.csplib.org/Problems/prob013
http://www.csplib.org/Problems/prob013

	Automatic Streamlining for Constrained Optimisation

